

CII National Award for Excellence in Energy Management-2021

> Hero MotoCorp Ltd. Gurgaon Haryana

Presenter : Pankaj Kaushik Virender Taneja Vivek Pandey

Table of Contents

08	Employee Engagement					
07	Green Supply Chain					
06	Water & GHG Emission					
05	 Renewable & Green Energy & Waste as Fuel 					
04	Innovative Ideas					
03	• ENCON Projects(2018-21)					
02	 Plant Energy Data 					
01	 Introduction & Energy Management 					

Hero MotoCorp – Manufacturing Locations

Gurgaon Plant Overview

I Hero

P 4

Product Portfolio

I Hero

Introduction- Plant manufacturing Process

Introduction- Energy Management cell & roles

Dedicated Energy Management Cell and defined their roles & responsibilities.

Be the Future of Mobility

Introduction- Environment & Energy conservation Policy

Framed Plant Energy conservation Policy from the environment policy.

Impact of Covid 19

I Hero

Less Production by 5 % than Planned

> 15 % Less Planned due to Covid-19 impact

- Reduced SEC by 3% than Planned despite of less production
 - Plant operation Efficiency improvement at low demand in production
 - Stopping idle running of Assembly lines & machines

Energy Usage - Electrical & Thermal

I Hero

Year wise Plant Energy consumption Trend

13 %

Bench Marking – Internal / National/ Global

Hero

Strategic Approach @ Gurgaon Plant :

Hero

Energy Conservation projects 2018-19

Major Project	Energy Saving (Lacs Kwh)	Cost Saving (Rs. In Lacs)	Remark
1-Air Cooled Energy Efficient Compressors in Utility	1.07	12.2	
2- Separation of Air Headers & added New air headers	1.82	20.7	
3-Connecting F/Assay Lines with Static Transfer Switch(STS)	0.89	90	Manpower Saving
4-Change Over Panel Plan at Utility	1.82	100	Economical Source use
5-Power factor Improvement by Installing Hybrid Capacitor bank	6.82	45.1	
6-Heat Pump installation in washing machine	1.87	21.3	
7- Heat Pipe at Gas Generator-Waste Heat Recovery	3360	50	M kcal/Yr
8-Solar Thermal Dish for Canteen	81	5.6	M Kcal/Yr
9-Advance Energy Management System-EMS	4.03	45.9	
Total Saving From Major Projects-9	18.32	390.8	
Other Misc. Project-12	6.79	65	
Total Saving	25	456	3441 M kcal Thermal Saving Additional

25 Lacs Kwh Saved by Implementing 10 Major Energy Conservation Projects

Be the Future of Mobility

Energy Conservation projects 2019-20

Sr No	Major Project	Energy Saving (Lacs Kwh)	Cost Saving (Rs. In Lacs)	Thermal Saving (in Kcal/Hr)	Remarks
1	Installation of 150KWp Rooftop Solar PV system in Employee Bike parking shed	2.18	26.16		
2	Replacement of 2 Nos. Old Compressor with Energy efficient IE4 Keaser Compressor	4.25	51.00		
3	Centralized FDV Online Monitoring & Control System for plant	7.20	86.40		Innovative Project-1
4	Replacement of 11 Nos. Conventional IE2 motors with IE4 motors in Utility area	0.47	5.66		
5	Replacement of conventional AC with Energy efficient Inverter type ACs (14 Nos.)	0.72	8.60		
6	Replacement Of Solar Day Lighting system in the Plant main gangway (20Nos.)	0.47	5.61		
7	Solar All-In-One Standlone LED Street lights (35 Nos.) from Visitor Gate to NMC area	0.14	1.72		Renewable Project
8	Bio Methane Plant for Canteen Application, LPG Cap: 20 Kg/Day	0.00	3.80	9,583	Renewable / Thermal Project (7300 Kg/yr of LPG equ. saving)
9	Replacement of HRU with Heat Pipe system for efficient transfer of heat in DG house	0.00	9.00	244,000	
10	CED Oven Heat Recovery, Cap: 1 Lkcal/hr	0.00	1.50	100,000	
11	Sludge Drying system for converting the wet sludge in to Powder form in ETP	0.00	8.80		Innovative Project-2
12	Replacement of Filter Press with Sludge Dewatering machine to reduce the moisture content from 80% to 30% in ETP	0.00	4.40		
13	Installation of STS for Engine Assamblies	0.00	6.10		
13	Interlocking of Lights of Assembly Line with conveyor Panels and Other Shops with Operation Timings	0.83	9.98		
14	Idle tripping Ckt for Engine Plant machines-50 Nos	0.60	7.21		
15	Installation of Motion Sensors for Lights & Fan-100 Nos	0.18	6.10	·	
	Grand Total:	17.04	242.04	353,583	

17 Lacs Kwh Saved by Implementing 15 Major Energy Conservation Projects

Be the Future of Mobility

Energy Conservation projects 2020-21

Sr No	Major Project	Energy Saving	Cost Saving (Rs. In Lacs)	Thermal Saving (in KCal/day)	Remarks
		(Lacs Kwh)		(in Keal) ady)	
1	Centralized Heat Pump System for Engine Assembly NGCT Washing Machines (3 Nos.) by Offsetting Electrical Heaters	0.75	7.50		Innovative Project
2	IE4 motor based Energy Efficient Air Compressor in the Utility Area	2.55	25.50		
3	Reduction of carbon footprint through Solar Thermal Collector system for Al Phase Washing M/Cs	0.9	9.00	300,000	Renewable Project
4	Conventional Motors replacement into Premium Efficiency IE4 Motors in Weld Shop & DG House (16 Nos)	0.35	3.50		
5	Electrical Agitator in Paint Shop for Paint mixing application instead of Pneumatic type	1.1	11.00		Innovative Project
6	Replacemnt of 55 KW Compressor Cooling Tower Pump with 32 KW Motor-pump.	0.9728	9.73		
7	Compressor Cooling close ckt Pump replacement from 55 KW to 45 KW Motor-pump.	0.4864	4.86		
8	Installed Air Cooled Compressors-1080 cfm. Stopping 1 Nos. Cooling Tower 200 TR-2 Nos	2.432	24.32		
9	Stopping HRU Compressor by utilizing Compressed air 5 bar from UTL Header.	0.2128	2.13		
10	HSD Fork Lift Conversion to Battery Operated-1Nos	0	0.65	60,000	
11	Occupancy sensor for Lights-25 Nos	0.09125	0.91		
12	Replacement of Old conventional split AC with 5 star rating AC-25 Nos	0.468	4.68		
13	Energy Efficient FDV Blower(Direct Coupled)-4 Nos	0.16	1.60		
14	80 W BLDC Fans in Place of 100 W Conventional Fans-100 Nos	0.09728	0.97		
	Grand Total:	10.57053	106.36	300,000	

10.6 Lacs Kwh Saved by Implementing 14 Major Energy Conservation Projects

Be the Future of Mobility

Energy Conservation projects 2021-23 Plan

I: Hero

	Proposed Projects Plan for next Two Years								
Financial	Methodology	Project Description	UOM	Otv		Proposed Savii	ng	Target	Responsibility
Year	Wiethodology			Qty	KWH/ Day	KWH/Yr	₹ Lacs/Yr	Date	Responsionity
	Renewable Energy	Solar Rooftop PV Expansion in New OBL Shed	KWp	250	833	2,50,000	22.4	Jun21	Pankaj Kaushik
	Management Control	66KV Electrical Grid (6 Months uasge)	Lot	1	0	0	200.0	Dec-21	Amit Rathore
	Efficiency improvement	Centralized Utility Cockpit System	Lot	1	1,000	3,00,000	26.9	Mar-21	Pankaj Kaushik
FY: 21-22	New Technology	Centralized Heat Pump System for NEP Washing M/Cs	Lot	1	500	1,50,000	13.4	Nov-21	Ashish Meher
	New Technology	Online Monitoring & Control of Exhaust System	Nos	35	583	1,75,000	15.7	Oct-21	Virender Taneja
	Loss Reduction	Energy Saving through EMS Monitoring & Control	Lot	1	450	68,000	6.1	Mar-22	RG Mandan
	Efficiency improvement	Replacement of DOL starters with VFD Control Panels	Nos	7	210	44,100	3.9	Aug-21	Virender Taneja
		Total Saving		3576	9,87,100	288.3			
	Efficiency improvement	AHUs Online Monitoring System	Nos	5	267	80,000	6.8	Jul-22	Mukesh Sharma
	Loss Reduction	Energy Saving through EMS Monitoring & Control	Lot	1	450	1,35,000	11.5	Aug-22	RG Mandan
	New Technology	Direct coupled Motors in FDV Units	Nos	20	250	80,000	6.8	Oct-22	Hemant Gautam
FY [.] 22-23	Efficiency improvement	66KV Electrical Grid Optimum Utilization (reduce Fuel consp.)	Lot	1	200	32000	2.5	Dec-22	RG Mandan
11.22-23	New Technology	Centralized Heat Pump System for Weld Shop Washing M/Cs	Lot	1	500	1,50,000	12.8	Dec-22	Ashish Meher
	New Technology	SMART ESS (Load Management System)	Nos	7	333	1,00,000	8.5	Mar-23	RG Mandan
	Loss Reduction	Smart control system for Lights & Fans	Lot	1	200	60,000	5.1	Mar-23	Virender Taneja
		Total Saving		2200	637000	54.0			

Hero

Create | Collaborate | Inspire

P 17

Major Energy Saving Projects Implemented - 2019-20

Hero

<u>1-Replaced water cooled to Air Cooled Energy Efficient Compressors</u></u>

Rotor lube and flute Ratio - 4:6

Kwh Cons./Day-19015

Rotor lube and flute Ratio - 5:6

Kwh Cons./Day-18243

Description	Uom	Atlas copco (Water Cooled)	Kaeser (Air Cooled)
Motor efficiency	%	95%	97.0%
Motor efficiency class	IE	IE2	IE4
Free Air Delivery @ 5.5 bar	FAD	980	1080
Package power in put at 5.5 bar	kw	155.3	152.2
Specific Power Consumption/CFM @ 5.5bar	KW/CFM	0.16	0.14

After installation of Air Cooled compressors achieved Saving –2.43 Lacs kwh/Year

Be the Future of Mobility

Major Energy Saving Projects Implemented - 2019-20

Hero

2- Energy Saving IE4 Motors of Higher rating

Efficiency improvement by replacing conventional motors by Premium Eff. motors(>=18kw-160kw)

 10 Nos of Premium Efficiency IE4 Motors (> = 18 KW) in Steel Phase, Gear Section & ABS PT Line

Major Energy Saving Projects Implemented - 2019-20

3.Reduction of carbon footprint through Solar Thermal Collector for Al Phase Washing M/Cs

• Solar Thermal discs (25 Nos) follows the Sun path to generate the required Heat energy.

- Rated capacity : 3.0 Lkcal/day
- Heat utilization in the Aluminum phase Washing machines (4 Nos)
- Real time monitoring of Solar Heating system

After installation of Solar thermal system achieved Saving –0.9 Lacs kwh/Year

Be the Future of Mobility

Create | Collaborate | Inspire

Hero

Innovation Project-1:

<u>4.Replacing pneumatic driven agitator with electric operated agitator by controlling the</u> motor according to paint level.

Background :

Air Agitator uses 12 cfm for mixing the paint. Power required to produce air 12cfm (8.5M³/hr) @ 100 psi (6.0 bar) at the compressor requires 2.4kW of Energy (1cfm 0.2kW).

Analysis / Issues :

Present system cost consumption is very high, optimisation of energy source is important

Proposed:

By installing electric agitators we can save Rs.10 Lac per year as the running cost of pneumatic equipment is high and annual energy cost of 1 electric pump is Rs.7300, in addition to this there are some more benefits like R&M (Manpower spares) saving and clean environment.

Advantages-

- Elimination of Paint Fumes
- Cost Saving of Rs.10 Lac by replacing pneumatic agitator with electric agitator

Be the Future of Mobility

Create | Collaborate | Inspire

I Hero

ENCON projects already Implemented-1

I: Hero

ENCON projects already Implemented-2

I: Hero

Innovation Strategies of HMCL:

Corporate Initiatives: (Hero Hatch – A Start-up Programme)

Hero

Description

HeroHatch has been formed with the aim to foster innovation within the organisation. This unit will work with the spirit of a startup, while utilising existing people strengths. As a part of HeroHatch, we will keep experimenting new business models, services and revenue streams, celebrating both successes and failures.

Snapshot:

First Batch is already working on

- Electric Mobility
- Pre-Owned 2 Wheelers

The next batches are lined-up to work on

- 2 Wheeler Sharing and Rental
- Battery Charging
- Energy Conservation & Co2 Reduction

Every Year Hero Idea Contest was held for different themes in which Environment and Sustainability having one pillar.

Be the Future of Mobility

Innovation Project-1:

1.Centralized Heat Pump System in Eng. Assy. Washing Machines

Energy efficient compression type Centralized Heat Pump system for Eng. Assy Washing m/cs having approx. 0.75 LKWH/Annum (7.5 Lakh/Annum Approx.) of energy saving, which Offsets the existing Electrical Heaters

Energy saved 0.75 Lacs Kwh /Yr

Hero

Be the Future of Mobility

Create | Collaborate | Inspire

I: Hero

Innovation Project-2:

2.Conversion of 100 W Induction Motor Fan by BLDC Fan-80 W

Brushless DC motor also known as electronically commutated motor (EC motor) that are powered by AC electric power supply.

- 100 Nos for DG House & Canteen (Ph#1)
- 63% Energy Saving than the Conventional Fans
- This motor is enabled with "Permanent Magnet" it does away the mechanical commutator replacing with electronic device.

Energy saved 0.1 Lacs Kwh /year(in Phase#1),has a potential of Saving - 4.0 Lacs kwh/Year in Plant

Be the Future of Mobility

Renewable & Green Energy

I Hero

Hero

Be the Future of Mobility

On-site Renewable Energy Generation

- > We have an installation capacity of **350KWp** of Solar plant with an average annual power generation of **4.25 L KWh**.
- An additional 150KWp of Rooftop Solar plant was Installed in Yr 2019 above Employee Bike parking shed with having an annual power generation of nearly 2.4 L KWh.

Voors	PE Drojects	On Site	Off Site	Total RE	Pomorka			Solar PV Installat	on(MWp)	1 50		
Tears		Capacity			ç	0.50	0.75	1.50				
FY:17-18	100KWp of RCC mounted PV Solar	350 KW/p	0	350 KW/p								
& Earlier	250KWp of Rooftop PV Solar		0	330 KWp		Ŭ		Till Mar 21	Till Jul 21	Proposed Till Mar 22		
	Introduction of Solar SmarTree	6.5 KWp	0	6.5 KWp +		100	KWp	PV Solar				
FY:18-19 Completed	Concentrated Solar Thermal Dishes (16 Nos.)	1,76,000 KCal/day	0	1.76LKCal/da C y	1.76LKCal/da Y	1.76LKCal/da y	On-Site Only	e Only				and the particular
FY:19-20 Completed	Expansion of 150KWp Solar PV	150 KWp	0	150 KWp			Z					
FY:20-21 Completed	Solar thermal Dish	300000 Kcal/day		300000 Kcal/day	On-Site	250 KWp		250 KWp PV Solar				
FY:21-23	Expansion of Solar PV plant with Capacity of 750KWp	750 KWp	0	4.22.1414	On-Site & Off-Site Both		1					
Plan	Solar Power Wheeling through State GRID (3.57 MWp)	0	3.57 MWp	4.32 WWp								
	GRAND TOTAL:	1.56 MWp	3.57 MWp			*	100KW Roof 250KW NEP Ro	p Solar at Alu. Phase RCC p Solar Plant at Despatch a oof	* 150k Bike	Wp Solar at Employee Parking Shed		

On site 500 KWp Roof top Solar PV plant for in-house use

Be the Future of Mobility

Waste as Fuel

I Hero

1.Gas generator's Jacket Water Waste Heat Recovery 2.Gas generator's Exhaust Gas Waste Heat Recovery

Gas Engine Waste Heat Recovered & used as Fuel resulting in Saving 11784 M Kcal/Yr

Be the Future of Mobility

Air to Air Heat is used to pre-heat fresh air Recirculation Exchanger Ambient Temp (on atmospheric Fresh Air IN **ED Oven** temperature) for ED oven in **CED** Paint shop. Ambient+20°C **Burner** (Targeted $\Delta t = 20$ Deg. Unit **Celsius**) Supply Blower **Supply Blower** Cap 100000 kcal/hr **4.Paint Waste Sending to Cement Industries Disposal of Paint Sludge** Paint Sludge is generated in

Exhaust Blower 随

180°C

100% Hazardous waste used as alternate fuel/raw material in Cement plants from July 2018

CED Waste Heat is recoverd, Saving: 480 M kcal/Yr

3.CED Paint shop Oven Exhaust Waste Heat Recovery

used as fuel

Waste as Fuel

An air-to-air Heat Exchanger

Paint shop from Painting

to Cement industries to be

Process.100% Sludge is sent

Be the Future of Mobility

Create | Collaborate | Inspire

P 30

368

Hero

Flue Gas to

Atmosphere

Waste (MT/Year)

2017-18 2018-19 2019-20 2020-21

428

426

302

90°C

Sewage Effluent Management

Capacity-600 Ltr/Hr

I Hero

Process Effluent Management

Capacity-600 Ltr/Hr

P 32

I Hero

Rain water harvesting

Rain Water Harvesting

HHML Rain Water Harvesting System			stem	O Alexandre billing Egert & Separa killing O	Rain water Harvesting - Layout
Catchment's			Existing		
Buildings Area (m ²)		57421		
Roads Area (m²)			5725	DTE FLAN MANT	
Average Annual Ra	infall (mm)		726		
Water Harvesting (for Buildings = 0.8	m ³)(Runoff o 5, Roads = 0	coefficient .7)	28128		
Total Water Harves	ting (m ³)		38344	726 mm Avg.	
Bround Water M	onitoring Ground Water Level	Ground Water Level R	acordur		
MMWWWWW	51.38 metres Lost Updated on 2021-08-11 12:17.09				
1200 AM Augustis 2021 1220 AM Augusti 2021 1220 AM August 10, 2021 1220 AM — Counce Titler Lewitty;	Start Date 04-08-2021	HM2G plant has O	nline real time		
	End Date	table monitoring	for ground water	Rain Water Harvesting Well Site Photograph	No. of recharge shafts=27 nos.

27 Shaft of Rain Water harvesting systems Achieving 250 % of Recharging

Be the Future of Mobility

Create | Collaborate | Inspire

Hero

GHG Emission: Targets for HMCL:

I: Hero

Green Supply Chain Commitment

GVDP: An Initiative by Hero for protecting and preservation of Environment

Green Vendor Development Programme

We at Hero MotoCorp are continuously striving for synergy between technology, system and human resources, to provide products and services, to meet the aspiration of our valued customers that too, demonstrating our "WE CARE" philosophy. We believe that our vendors and dealers are key stakeholders and partners to work towards the goal of sustainable development.

Green Vendor Development Programme (GVDP) encourages a effort between Hero MotoCorp and its suppliers to achieve Hero MotoCorp's overall corporate environmental goal. GVDP calls for partner companies to demonstrate their commitment towards improved environmental performance and striving for continual improvement.

	Buyers Gain	Sellers Gain	Mutual Gains
	Multiplier effect of supplier gains	Reduced production cost- resource optimization	Market competitiveness
	Reduced purchase costs	Assured client commitment/ potential for more clients	Public image
	Improved image	Reduced liability	Improved relations-secured ties
	Improved market reach	Improved relations with regulatory agencies	Reduced production costs greater margins
Reduced liability		Competitive advantage over others	
	Greater assurance of consistent & reliable supply	Improved management systems at marginal costs	

METHODOLOGY Green Supply Chain Cell/Team Approach

Program Approach had Been Knocked Down Into Year Wise Activities

Hero's initiative for Green Vendor

development program.

Be the Future of Mobility

Create | Collaborate | Inspire

I: Hero

Awareness Creation for Suppliers, vendors, Associates, etc.

Hero

AN HM2G-OBL DRIVER ENGAGEMENT INITIATIVE

Education and Awareness program created for driver for saving fuel by optimizing routes And periodic vehicle maintenance.

Supplier Evaluation & Certification

Recognition Criteria -

- Top Management involvement and commitment .
- Understanding & aligning with GVDP approach.
- Process mapping as per GVDP methodology
- Adequacy & uniqueness of EARN Projects

On the basis of Adequacy & uniqueness of their EARN PROGRAM ,SCP's are certified every year in the Recognition Program.

Green Supply Chain Efficiency Improvement Programs for Suppliers

I Hero

Elimination of Single Use Plastic / Non reusable plastic Application of Polybag in Packaging Alternative of Polybag Over each On a group of Over each bin Tie parts in **Over entire** Image Applicability Advantages Disadvantages Use Packing part parts groups trolley Jute Bags - C Class components & Heavy Reusable Higher cost parts Recyclable Opaque Eco-friendly -Dust attractive **Bio-Degradable** - Light weight parts Bio degradable Higher cost Polybag Eco friendly Low weight Recyclable carrying capacity Transparent High. Also used High in C class & High in Greasy & Cable Very Low Low exclusively in Engine parts Oily parts. Occurrence Export Variant parts. Cloth bag -Light to Heavy components Reusable Higher cost -Scratch, Rust & - Clustering - Rust & Dust - Clustering -Rust & Dust -Recyclable Opaque -Temporary Eco-friendly Purpose Dust protection. protection protection packaging . Washable Rust & Dust: -Non-woven Double sided -Plastic Twine / Flap cover with Develop permanent Double sided bags flap cover with -Develop Velcro over a side packaging Non Woven -Light to Heavy components Reusable Higher cost flap with Velcro -Jute Bags Velcro Trolley of trolley Possible Bag Recyclable . Opaque over bin Non Wooven Eco-friendly -Solution Scratch: Foam / covers. Washable -PVC cover on walls PP Sack Bag -Heavy components -100% reusable. -Higher cost -Non Biodegradable recvclable, eco-friendly Custom Bins - Dedicated packaging for parts -Dedicated packaging -All packaging need to be replaced with new one

Hero

Be the Future of Mobility

Create | Collaborate | Inspire

P 37

Green Vender Development Program 2020-21(EARN Program)

I Hero

Employee Involvement & Capacity Building

Hero

Training programs on energy conservation are organized.

Be the Future of Mobility

Employee Involvement & Capacity Building

I Hero

Hero

Create | Collaborate | Inspire

P 40

Employee Involvement & Capacity Building

Hero

Initiative taken During Covid-19 Lockdown

I Hero

Learning from CII Energy Awards

Guidance from Honorable CII Judges

- Methodology for deciding scope of Energy Conservation at section/line/machines
- · Various Projects-EMS, Digitization
- Solar Thermal for Hot Water
- Benchmarking with National/Global Standards on Energy Consumption

Encon Initiative during Covid-19 Pandemic

- Reduction Aux. Power Consumption by shifting all plant load on GRID
- Power made off for all non essential equipment, Separate Supply arrangements for critical Equipment's
- Only Critical Lightings were made functional

How Green Co has supported us---

- Increased Share of Renewable Energy
- Methodology for Calculating SEC
- Approach for Carbon neutrality
- Mentoring Vendors for Green Co Certification

ENCON Sharing with others --

Senior Officials from Railways visited to see Encon Initiatives

Be the Future of Mobility

